2,801 research outputs found

    Stable vortex-antivortex molecules in mesoscopic superconducting triangles

    Full text link
    A thermodynamically stable vortex-antivortex pattern has been revealed in mesoscopic type I superconducting triangles, contrary to type II superconductors where similar patterns are unstable. The stable vortex-antivortex "molecule" appears due to the interplay between two factors: a repulsive vortex-antivortex interaction in type I superconductors and the vortex confinement in the triangle.Comment: 5 pages, 4 figures, E-mail addresses: [email protected], [email protected], [email protected], [email protected]

    Calculation of flow of a radiating gas in a shock layer

    Get PDF
    Flow calculation of radiating gas in shock layers over blunt bodie

    Comment on "Order parameter of A-like 3He phase in aerogel"

    Full text link
    We argue that the inhomogeneous A-phase in aerogel is energetically more preferable than the "robust" phase suggested by I. A. Fomin, JETP Lett. 77, 240 (2003); cond-mat/0302117 and cond-mat/0401639.Comment: 2 page

    Phonons in magnon superfluid and symmetry breaking field

    Full text link
    Recent experiments [1],[2] which measured the spectrum of the Goldstone collective mode of coherently precessing state in 3He-B are discussed using the presentation of the coherent spin precession in terms of the Bose-Einstein condensation of magnons. The mass in the spectrum of the Goldstone boson -- phonon in the superfluid magnon liquid -- is induced by the symmetry breaking field, which is played by the RF magnetic fieldComment: 2 pages, JETP Letters style, no figures, version accepted in JETP Letter

    Andreev scattering in nanoscopic junctions at high magnetic fields

    Full text link
    We report on the measurement of multiple Andreev resonances at atomic size point contacts between two superconducting nanostructures of Pb under magnetic fields higher than the bulk critical field, where superconductivity is restricted to a mesoscopic region near the contact. The small number of conduction channels in this type of contacts permits a quantitative comparison with theory through the whole field range. We discuss in detail the physical properties of our structure, in which the normal bulk electrodes induce a proximity effect into the mesoscopic superconducting part.Comment: 4 page

    Approximating acyclicity parameters of sparse hypergraphs

    Get PDF
    The notions of hypertree width and generalized hypertree width were introduced by Gottlob, Leone, and Scarcello in order to extend the concept of hypergraph acyclicity. These notions were further generalized by Grohe and Marx, who introduced the fractional hypertree width of a hypergraph. All these width parameters on hypergraphs are useful for extending tractability of many problems in database theory and artificial intelligence. In this paper, we study the approximability of (generalized, fractional) hyper treewidth of sparse hypergraphs where the criterion of sparsity reflects the sparsity of their incidence graphs. Our first step is to prove that the (generalized, fractional) hypertree width of a hypergraph H is constant-factor sandwiched by the treewidth of its incidence graph, when the incidence graph belongs to some apex-minor-free graph class. This determines the combinatorial borderline above which the notion of (generalized, fractional) hypertree width becomes essentially more general than treewidth, justifying that way its functionality as a hypergraph acyclicity measure. While for more general sparse families of hypergraphs treewidth of incidence graphs and all hypertree width parameters may differ arbitrarily, there are sparse families where a constant factor approximation algorithm is possible. In particular, we give a constant factor approximation polynomial time algorithm for (generalized, fractional) hypertree width on hypergraphs whose incidence graphs belong to some H-minor-free graph class

    Photoluminescence of tetrahedral quantum-dot quantum wells

    Full text link
    Taking into account the tetrahedral shape of a quantum dot quantum well (QDQW) when describing excitonic states, phonon modes and the exciton-phonon interaction in the structure, we obtain within a non-adiabatic approach a quantitative interpretation of the photoluminescence (PL) spectrum of a single CdS/HgS/CdS QDQW. We find that the exciton ground state in a tetrahedral QDQW is bright, in contrast to the dark ground state for a spherical QDQW.Comment: 4 pages, 2 figure
    • …
    corecore